Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0227201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31895939

RESUMO

The eastern Baltic cod (Gadus morhua) population has been decreasing in the Baltic Sea for at least 30 years. Condition indices of the Baltic cod have decreased, and previous studies have suggested that this might be due to overfishing, predation, lower dissolved oxygen or changes in salinity. However, numerous studies from the Baltic Sea have demonstrated an ongoing thiamine deficiency in several animal classes, both invertebrates and vertebrates. The thiamine status of the eastern Baltic cod was investigated to determine if thiamine deficiency might be a factor in ongoing population declines. Thiamine concentrations were determined by chemical analyses of thiamine, thiamine monophosphate and thiamine diphosphate (combined SumT) in the liver using high performance liquid chromatography. Biochemical analyses measured the activity of the thiamine diphosphate-dependent enzyme transketolase to determine the proportion of apoenzymes in both liver and brain tissue. These biochemical analyses showed that 77% of the cod were thiamine deficient in the liver, of which 13% had a severe thiamine deficiency (i.e. 25% transketolase enzymes lacked thiamine diphosphate). The brain tissue of 77% of the cod showed thiamine deficiency, of which 64% showed severe thiamine deficiency. The thiamine deficiency biomarkers were investigated to find correlations to different biological parameters, such as length, weight, otolith weight, age (annuli counting) and different organ weights. The results suggested that thiamine deficiency increased with age. The SumT concentration ranged between 2.4-24 nmol/g in the liver, where the specimens with heavier otoliths had lower values of SumT (P = 0.0031). Of the cod sampled, only 2% of the specimens had a Fulton's condition factor indicating a healthy specimen, and 49% had a condition factor below 0.8, indicating poor health status. These results, showing a severe thiamine deficiency in eastern Baltic cod from the only known area where spawning presently occurs for this species, are of grave concern.


Assuntos
Doenças dos Peixes/metabolismo , Gadus morhua/metabolismo , Deficiência de Tiamina/veterinária , Tiamina/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Fígado/metabolismo , Masculino , Tiamina/análise , Deficiência de Tiamina/metabolismo
2.
Sci Rep ; 7(1): 14451, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089512

RESUMO

The Baltic Sea population of the common eider (Somateria mollissima) has declined dramatically during the last two decades. Recently, widespread episodic thiamine (vitamin B1) deficiency has been demonstrated in feral birds and suggested to contribute significantly to declining populations. Here we show that the decline of the common eider population in the Baltic Sea is paralleled by high mortality of the pulli a few days after hatch, owing to thiamine deficiency and probably also thereby associated abnormal behaviour resulting in high gull predation. An experiment with artificially incubated common eider eggs collected in the field revealed that thiamine treatment of pulli had a therapeutic effect on the thiamine status of the brain and prevented death. The mortality was 53% in untreated specimens, whereas it was only 7% in thiamine treated specimens. Inability to dive was also linked to brain damage typical for thiamine deficiency. Our results demonstrate how thiamine deficiency causes a range of symptoms in the common eider pulli, as well as massive die-offs a few days after hatch, which probably are the major explanation of the recent dramatic population declines.


Assuntos
Patos/metabolismo , Deficiência de Tiamina/metabolismo , Tiamina/metabolismo , Animais , Países Bálticos , Aves , Ovos , Reprodução/efeitos dos fármacos
3.
Sci Rep ; 6: 38821, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958327

RESUMO

Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiamine-dependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported.


Assuntos
Aves/metabolismo , Bivalves/metabolismo , Rajidae/metabolismo , Deficiência de Tiamina , Anguilla/metabolismo , Animais , Animais Selvagens/metabolismo , Galinhas/metabolismo , Feminino , Mytilus/metabolismo , Salmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...